Vol. 38 No. 6

Dec. 2024

保护剂在清水混凝土工程中应用研究

Application of Protective Agent in Fair Faced Concrete of Large Low Speed Wind Tunnel Project

峰, 周殷弘, 嵇朵平, 秦靖闰, 王森基

(中建八局发展建设公司,山东 青岛 266000)

要: 为提高清水混凝土的耐久性,对氟碳类、有机硅类以及丙烯酸类三种不同保护剂在不同涂刷方式下 清水混凝土的耐久性进行了对比试验。结果表明:相比基准试验组,涂刷保护剂后的清水混凝土耐久性均有不同 程度的提升,面漆对于耐久性的提升作用强于底漆,氟碳类保护剂的改善效果>有机硅类保护剂的改善效果>丙 烯酸类保护剂的改善效果,且最佳涂刷方式为两层底漆+两层面漆;采用氟碳类保护剂进行两层底漆+两层面漆 涂刷后,48 h 吸水率、60 d 碳化深度、60 d 氯离子渗透深度相比基准试验组分别降低78.9%、65.3% 和47.3%, 150 次冻融循环后质量损失率仅为 0.53%, 相对动弹性模量达到 83.3%, 抗压强度耐腐蚀系数达到 0.892。

关键词:清水混凝土;保护剂;涂刷方式;耐久性能

中图分类号: TU593 文献标志码: A 文章编号: 1005-8249 (2024) 06-0043-06

DOI: 10.19860/j.cnki.issn1005-8249.2024.06.008

LIN Feng, ZHOU Yinhong, JI duoping, QIN Jingrun, WANG Senji (The Development Construction Co., Ltd of China Construction Eighth Engineerings Division, Qingdao 266000, china)

Abstract: To improve the durability of plain concrete, comparative tests were conducted on the durability of plain concrete with three different protective agents, fluorocarbon, organosilicon, and acrylic, under different coating methods. The results show that compared with the benchmark test group, the durability of fair faced concrete after brushing protective agent is improved to varying degrees. The effect of finish paint on durability is stronger than that of primer. The improvement effect of fluorocarbon protective agent is better than that of silicone protective agent and acrylic protective agent, and the best brushing method is two layers of primer and two layers of finish paint; After applying two layers of primer and two layers of finish paint with fluorocarbon protective agent, the 48h water absorption, 60 d carbonization depth and 60d chloride ion penetration depth were reduced by 78.9%, 65.3% and 47.3% respectively compared with the benchmark test group. After 150 freeze-thaw cycles, the mass loss rate was only 0.53%, the relative dynamic elastic modulus was 83.3%, and the compressive strength corrosion resistance coefficient was 0, 892.

Keywords: fair faced concrete; protective agent; brushing method; durability

引言

清水混凝土具有施工工艺少、节能减排、经济 便宜、朴实美观等诸多优点,是风洞洞体衬砌工程 中较为常用的形式之一[1-3]。但是由于风洞特殊的功 能要求, 衬砌用清水混凝土必须具备很高的自密实 性和耐久性。为了提升清水混凝土的耐久性,一种

作者简介: 林 峰(1979—)男,硕士、高级工程师、研究 方向:建筑设计。

收稿日期: 2022-11-16

材料科学

方式是向混凝土中掺入矿物掺合料或者其他外加剂,但这势必会增加混凝土设计、制备和施工过程中的复杂性;二是在清水混凝土施工完成后,在混凝土表面涂刷保护剂,从而对混凝土进行预防和保护。按照清水混凝土保护剂作用方式将其划分为表面成膜和渗透封闭两类,其中表面成膜保护剂又可分为丙烯酸类保护剂、环氧类保护剂、聚氨酯类保护剂、氟碳类保护剂、渗透封闭类保护剂又可分为有机硅类保护剂、水泥基渗透结晶型保护剂以及半渗透型表面保护剂,不同的保护剂体系对清水混凝土耐久性的改良机理和效果有较大的差异[4-7],为了能更好地指导风洞清水混凝土施工,对不同类型保护剂对清水混凝土耐久性的影响展开研究。

1 试验概况

1.1 试验原材料

试验所用水泥为 P·O 42.5 普通硅酸盐水泥,平均密度为 3.01 g/cm³,细度(>80 um)为 0.32%,初凝和终凝时间分别为 130 和 210 min,28 d 抗折和抗压强度分别为 7.5 和 49.2 MPa。粗骨料为5~20 mm连续级配的碎石,表观密度 2 900 kg/m³,堆积密度1 600 kg/m³,吸水率 1.8%。细骨料为天然河砂,细度模数 2.5,表观密度 2 600 kg/m³,堆积密度1 570 kg/m³,含泥量 4.7%。减水剂主要成分为聚羧酸盐,减水率 30%。保护剂选取 QD 丙烯酸树脂清水混凝土保护剂(底漆 + 面漆)、LB 有机硅清水混凝土保护剂(底漆 + 面漆)以及 QD 氟碳树脂清水混凝土保护剂(底漆 + 面漆)。

1.2 配合比设计

按照 C40 清水混凝土设计强度等级,参照规范《清水混凝土应用技术规程》^[8],初步拟定水灰比为 0.5,经过多次适配,最终得到 C40 清水混凝土的配合比:水泥 418 kg/m³、砂 699 kg/m³、石子 1 070 kg/m³、水 210 kg/m³、减水剂 0.42 kg/m^3 。

1.3 试件制备与养护

按照 C40 清水混凝土配合比, 先将石子、砂和水泥依次倒入搅拌桶中搅拌 1 min, 然后再掺入水和减水剂,继续搅拌 2 min,将拌制好的混凝土浇筑成 100 mm×100 mm×100 mm的正方体以及 100 mm×100 mm×400 mm的长方体,并保湿养护 2 d 后脱模,

将试件放入标准养护箱中 (温度 $20 \, \, ^{\circ}$ 、湿度 95%) 养护 $28 \, \, \mathrm{d}_{\circ}$

1.4 试件处理

将养护达到 28 d 龄期的清水混凝土试件取出, 用砂纸、锉刀等对试件表面进行打磨处理,去除表 面空鼓、砂包等缺陷,并对棱角处进行倒角处理, 然后将表面清理干净:长方体试件主要用于冻融循 环试验, 正方体试件主要用于吸水率、抗碳化、抗 氯离子渗透以及抗盐侵蚀试验。对于抗碳化试件需 要对试件的五个表面进行封蜡处理,留下一个面作 为保护剂涂刷面,封蜡处理前需要对试件进行干燥 处理。对进行辊涂处理试件, 先涂刷底漆, 再涂刷 面漆,涂刷方式分为五种: A 涂两层底漆、B 涂两层 面漆、C 涂一层底漆 + 一层面漆、D 涂两层底漆 + 两 层面漆、E 涂三层底漆 + 三层面漆。每两层漆的涂刷 间隔时间为6h; 待保护剂全部涂刷完成后需将试件 在室内干燥环境中静置 3 d, 然后再分别进行耐久性 试验。为验证保护剂效果,设置不涂任何保护剂的 试验组为基准试验组。

2 试验方案及方法

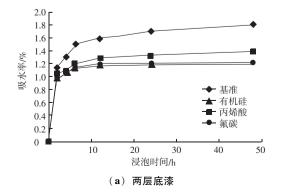
试验包括吸水率试验、抗碳化试验、冻融循环试验、抗氯离子渗透试验以及抗盐侵蚀试验五种。

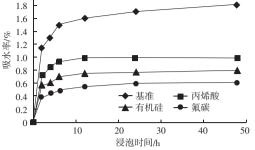
吸水率试验采用边长为 100 mm 的正方体试件, 先将涂完保护剂的混凝土试件置于 60 $^{\circ}$ 供箱中烘干 48 h,然后取出称计重量 M_0 ,再将试件放入水中浸 泡,分别在 2、4、6、12、24 和 48 h 将试件取出称 取重量 M_i ,从而计算各个时刻的吸水率。

抗碳化试验采用边长为 100 mm 的正方体试件,将处理好的混凝土试件放入试验箱中,将 CO₂浓度调至 20%,温度调至 20℃,湿度调至 75%,在试验箱中碳化 60 d 后,取出混凝土试件,然后在混凝土裸露部分滴上 1% 的酚酞酒精溶液,测出各点的碳化深度,计算平均值作为碳化深度。

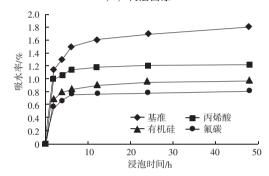
冻融循环试验采用 100 mm × 100 mm × 400 mm 的长方体试件,将处理好的试件称取初始质量 M_0 和初始横向基频 f_0 ,然后向冻融试验箱中注入清水漫过混凝土试件 5 cm,接着进行快速冻融试验,设置最低温度为 – 18 $^{\circ}$ 、最高温度为 8 $^{\circ}$ 、溶解试件为 1 h,冷冻时间为 100 min,总冻融循环次数为 150

次,然后取出试件称取重量 M,和测试横向基频 f, 计算得到质量损失率和相对动弹性模量。

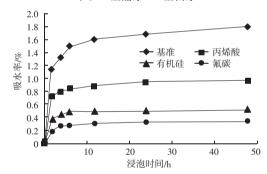

抗氯离子渗透试验采用边长为 100 mm 的正方体 试件, 先将试件置于60 ℃烘箱中烘干48 h, 然后取 出称计重量 M_0 ,接着将混凝土试件放入 5% 浓度的 NaCl 溶液中浸泡 60 d, 取出试件并在混凝土试件表 面喷涂浓度为 0.1 mol/L 的 AgNO,溶液,测出渗透深 度,取3个断面的算术平均值作为氯离子渗透深度。

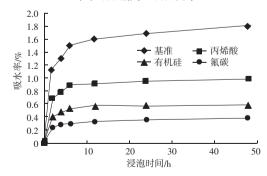

抗盐侵蚀试验采用边长为 100 mm 的正方体试 件, 先将试件至于60 ℃烘箱中烘干48 h, 然后测量 其初始抗压强度 P_0 , 然后将试件放入浓度为 5% 的 Na, SO, 溶液中浸泡 60 d (每 20 d 更换一次 Na, SO, 溶 液),将试件取出测试其硫酸盐侵蚀后的抗压强度 P_{n} , 计算抗压强度耐蚀系数。

试验结果分析


3.1 吸水率试验结果

由图1可知,吸水率随浸泡时间呈逐渐增大的变 化特征,但增长速率逐渐放缓,吸水率变化曲线可 划分为初始吸水率快速增长阶段(0~2 h)、吸水率 缓慢增长阶段(2~12 h)以及吸水率基本稳定阶段 (12 h以后),由于混凝土本身存在许多的原生孔隙, 因而在浸水初期吸水率会快速增长, 当试件中连通 孔隙充满水之后,吸水率增长速率逐渐减少,之后 会因为混凝土中部分物质溶蚀以及少量水分继续参 加水化反应, 吸水率还会持续增加一段时间到混凝 土内外孔隙压力达到平衡之后, 吸水率会逐渐达到 稳定状态,但由于必要的保护,混凝土在浸泡作用 下的内部物质一直处于溶蚀状态,因而吸水率一直 处于增长状态。使用清水混凝土保护剂体系后均可 以有效降低混凝土的吸水率,在涂刷两层底漆时,




(b) 两层面漆

(c) 一层底漆 + 一层面漆

(d) 两层底漆+两层面漆

(e) 三层底漆 + 三层面漆

不同保护剂和涂刷下不同吸水率变化曲线 Fig. 1 Variation curves of water absorption under different protective agents and coatings

丙烯酸保护剂清水混凝土的吸水率大于有机硅和氟 碳保护剂混凝土,在其他涂刷方式下,吸水率从大 到小依次为基准>丙烯酸>有机硅>氟碳。

材料科学

不同保护剂体系在不同涂刷方式下相对基准试 验组吸水率(48 h 后)的下降百分比情况,如图 2 所示。相同保护剂体系下,吸水率下降百分比排序 为:三层底漆+三层面漆>两层底漆+两层面漆> 两层面漆 > 一层底漆 + 一层面漆 > 两层底漆, 这说 明面漆的防水能力要大于底漆,且保护剂涂刷层数 越多, 防水能力越好, 但三层底漆 + 三层面漆的涂 刷方式相比两层底漆 + 两层面漆涂刷方式, 吸水率 下降百分比增加幅度不大,表明两层底漆+两层面 漆涂刷方式基本已经达到清水混凝土的最佳防水效 果。相同涂刷方式下,吸水率下降百分比从大到小 依次为: 氟碳 > 有机硅 > 丙烯酸, 这是因为氟碳类 保护剂中含有有机硅和氟碳树脂,具有半渗透、半 成膜的双重属性,从而可以使清水混凝土防水效果 达到最佳;有机硅保护剂底漆在本质上为硅烷,硅 烷可以渗透到清水混凝土内部并与水发生水解反应, 从而在混凝土从里到外形成一道以 Si-O-Si 为主链 的憎水层, 进而可以阻止外部水分继续进入混凝土, 起到较好的防水效果; 丙烯酸保护剂自身具有一定 的成膜特性, 但受限于自身性能, 如果涂抹层数偏 少,其防水性能无法发挥到最佳,因而在三种保护 剂中防水性能最差。

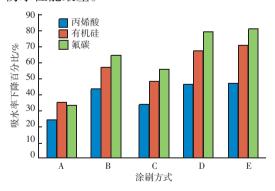
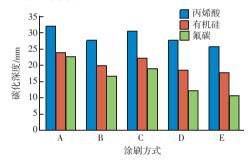


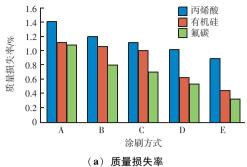
图 2 不同保护剂和涂刷下吸水率下降百分比 Fig. 2 Percentage of water absorption reduction under different protective agents and brushing

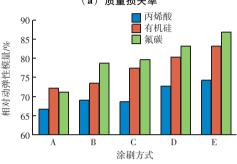
3.2 抗碳化试验结果

由图3可知,相同保护剂体系下,清水混凝土的碳化深度从大到小依次为:两层底漆>一层底漆+ 一层面漆>两层面漆>两层底漆+两层面漆>三层 底漆+三层面漆,这说明面漆的防碳化能力强于底 漆;相同涂刷方式下,氟碳类保护剂清水混凝土防 碳化能力最好,其次为有机硅类保护剂清水混凝土, 防碳化能力最差的为丙烯酸类保护剂清水混凝土; 基准试验组清水混凝土碳化 60 d 后的碳化深度达到 34.5 mm。由此可见,三种保护剂均能增强清水混凝 土的抗碳化能力,且随着涂刷层次越多,抗碳化能 力越好,但增强效果会放缓;由于氟碳类保护剂具 有半渗透、半成膜的双重属性,即兼具有机硅类的 防水特性,又有氟碳类表面成膜特性,可阻止 CO₂向 混凝土内部侵蚀和扩散,有机硅类保护剂中的硅烷 在表面成膜后具有透气不透水的特点,即使 CO₂进入 混凝土内部,但由于试件中缺乏水分,因而其碳化 作用是非常微弱的,丙烯酸保护剂的防水性能相对 较弱,底漆成膜致密性较差,因而导致清水混凝土 的抗碳化能力降低。

38 卷




图 3 碳化 60 d 不同试验组碳化深度试验结果 Fig. 3 Carbonization depth test results of different test groups after carbonization for 60 days


3.3 冻融循环试验结果

3.4 氯离子渗透试验结果

由图5可知,相同保护剂体系下,氯离子渗透

材料科学

(b) 相对动弹性模量 图 4 抗冻试验结果 Fig. 4 Frost resistance test results

深度从大到小依次为两层底漆 > 一层底漆 + 一层面漆 > 两层面漆 > 两层底漆 + 两层面漆 > 三层底漆 + 三层面漆,表明面漆的抗氯离子渗透效果要优于底漆的抗氯离子渗透效果;相同浸泡天数下,基准试验组的氯离子渗透深度达到 9.4 mm,涂刷保护剂后,抗氯离子渗透性能具有不同程度提升,氟碳类保护剂和有机硅保护剂对于清水混凝土抗氯离子渗透性能的改善效果基本相同,丙烯酸保护剂的提升效果相对较差,这主要是因为丙烯酸保护剂生成的保护膜更容易被破坏,稳定性不如两者的保护膜;当涂刷两层底漆 + 两层面漆后,再继续涂刷保护剂对清水混凝土抗氯离子抗渗透性能的提升作用不大,氟碳类保护剂和有机硅保护剂可降低氯离子渗透高度约45%,而丙烯酸保护剂也可达到30%。

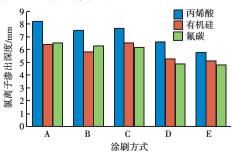


图 5 氯离子渗透高度 Fig. 5 Chloride ion penetration height

3.5 抗硫酸盐侵蚀试验结果

由图 6 可知, 浸泡 60 d 之后, 相同保护剂体系 下的抗压强度耐腐蚀性系数从大到小依次为:三层 底漆 + 三层面漆 > 两层底漆 + 两层面漆 > 两层面漆 >一层底漆 + 一层面漆 > 两层底漆,涂刷面漆的耐 腐蚀性系数优于涂刷底漆的耐腐蚀性系数;相同涂 刷方式下, 三种保护剂对清水混凝土的抗硫酸盐侵 蚀能力从大到小依次为: 氟碳试>有机硅>丙烯酸, 但三者的耐腐蚀性系数相差不大, 保护剂对清水混 凝土抗硫酸盐侵蚀的改善原理为在混凝土表面积内 部形成保护膜,阻止硫酸盐进入试件内部,从而减 少了大量膨胀物的产生,进而避免混凝土内部试件 裂缝的形成和扩展,延缓了强度降低的速率;当涂 刷方式为两层底漆 + 两层面漆时, 清水混凝土的耐 腐蚀性系数均可以达到 0.85 以上,再增加涂刷层数 虽然还可以增强抗硫酸盐侵蚀能力, 但提高幅度不 大, 意义并不大。

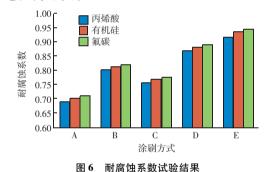


Fig. 6 Corrosion resistance coefficient test results

4 结论

- (1) 吸水率随浸水时间的增加呈逐渐增大的变化特征,且吸水率变化过程可分为初始吸水率快速增长阶段(0~2 h)、吸水率缓慢增长阶段(2~12 h)以及吸水率基本稳定阶段(>12 h)。
- (2) 三种保护剂体系均能对清水混凝土的耐久性起到一定的改善作用,氟碳类保护剂对于清水混凝土耐久性的改善效果最好,其次为有机硅类保护剂,最差的为丙烯酸类保护剂。
- (3)相同保护剂体系下,面漆的改善效果优于底漆,且涂刷层数越多,改善效果相对更好,但是当涂刷方式达到两层底漆+两层面漆后,清水混凝土的防水性能、抗碳化性能、抗氯 (下转第67页)

岩土力学。

制提供了科学依据和参考。

参考文献

- [1] 王梦恕. 中国隧道及地下工程修建技术 [M]. 北京: 人民交通出版社, 2010.
- [2] 余俊, 翁贤杰, 樊文胜, 等. 松散地层隧道进洞段管棚注浆加固效应分析 [J]. 山东大学学报; 工学版, 2020, 50 (6); 9.
- [3] 许黎明. 国内首条过海地铁盾构隧道关键技术攻关研究 [J]. 都市快轨交通, [J]. 都市快轨交通, 2017 (6): 51-55.
- [4] 郑可跃,施成华,雷明锋,等.考虑松动效应的高地应力构造破碎带隧道稳定性分析及大变形支护设计优化[J].岩石力学与工程学报,2021,40(8):1603-1613.
- [5] 吉凌,周传波,张波,等.大断面隧道爆破作用下围岩动力响

应特性与损伤效应研究 [J]. 铁道学报, 2021, 43 (7): 8.

- [6] 张小伟,张丽,韩亚飞,等. 大断面平顶地铁暗挖车站下穿既有建筑方案研究及变形控制:以北京地铁8号线三期前门站工程为例[J]. 隧道建设(中英文),2021,41(6):979-987.
- [7] 曹智淋,谢强,宋战平,等. 卸荷作用对超大断面隧道围岩压力的影响[J]. 岩石力学与工程学报,2020,39(S1):2882-2891.
- [8] 李俊杰. 暗挖区间隧道近接既有地铁隧道施工变形影响及控制措施研究[J]. 现代隧道技术, 2019, 56 (4): 168-174.
- [9] 赵鹏. 浅埋暗挖隧道上穿既有盾构变形控制研究 [J]. 铁道建筑技术, 2021 (11): 137-141.
- [10] 梁庆国,房军,贺谱.基于现场监测统计的隧道围岩压力特征 分析 [J]. 地下空间与工程学报,2020,16(2):555-566.

(上接第47页)

离子渗透性能以及抗硫酸盐侵蚀性能的改善作用开始放缓,故保护剂的最佳涂刷方式为两层底漆 + 两层面漆。

(4) 根据耐久性试验结果,推荐采用氟碳类保护剂作为清水混凝土的保护剂,且最佳涂刷方式为两层底漆+两层面漆。

参考文献

- [1] 陈金平, 邵津琛, 何静, 等. 清水混凝土配合比正交试验和质量控制 [J]. 粉煤灰综合利用, 2020, 34 (5): 72-76, 110.
- [2] 张笈玮, 樊博琅, 杨辉, 等. BIM 在异形薄壁混凝土风洞工程 施工中的应用研究 [J]. 施工技术, 2014, 43 (21): 17-20.
- [3] 孟书灵,卢霄,艾洪祥,等. 桥梁清水自密实混凝土的工

作性能及早期抗裂性能研究 [J]. 新型建筑材料, 2020, 47 (5): 5-9.

- [4] 张云鹏,张志增,李芳.清水混凝土保护剂对混凝土抗氯离子侵害的影响研究[J].河南城建学院学报,2019,28(3):44-48.
- [5] 张志增,张云鹏,李松凡,等. 清水混凝土保护剂对混凝土抗 冻性能的影响研究 [J]. 新型建筑材料,2018,45 (11): 134-138.
- [6] 张云鹏,张志增,李松凡,等.清水混凝土保护剂对混凝土的 抗碳化性能试验研究 [J].现代涂料与涂装,2018,21 (8):1-4,11.
- [7] 李芳,张云鹏,李松凡,等. 清水混凝土保护剂对混凝土吸水率的影响[J]. 河南科学, 2018, 36 (7): 1075-1079.
- [8] 《清水混凝土应用技术规程》. 北京市,中国建筑股份有限公司,2012-01-01.

(上接第53页)

对滑坡体稳定性的影响 [J]. 岩石力学与工程学报, 2005 (19): 56-60.

- [7] 向玲,王世梅,王力. 动水压力型滑坡对库水位升降作用的响应:以三峡库区树坪滑坡为例 [J]. 工程地质学报,2014,22 (5):876-882.
- [8] 史振宁,戚双星,付宏渊,等.降雨入渗条件下土质边坡含水率分布与浅层稳定性研究[J].岩土力学,2020,41(3):980-988,1085.
- [9] VIRATJANDR C, MICHALOWSKI R L. Limit analysis of submerged slopes subjected to water drawdown [J]. Canadian Geotechnical Journal, 2006, 43 (8): 802-814.
- [10] JIAGW, ZHANTLT, CHENYM, et al. Performance of a

large-scale slope model subjected to rising and lowering water levels $\lceil J \rceil$. Engineering Geology, 2009, 106 (1-2): 92-103.

- [11] 罗先启,刘德富,吴剑,等. 雨水及库水作用下滑坡模型试验研究[J]. 岩石力学与工程学报,2005 (14):2476-2483.
- [12] 贾官伟, 詹良通, 陈云敏. 水位骤降对边坡稳定性影响的模型试验研究[J]. 岩石力学与工程学报, 2009, 28 (9): 1798-1803.
- [13] 詹美礼, 踪金梁, 严飞, 等. 堤外水位升降条件下非稳定渗流模型试验研究 [J]. 岩土力学, 2012, 33 (增刊1): 91-96, 111.
- [14] 李子阳,马福恒,张湛,等. 水位骤变下土石坝非稳定渗流及稳定分析 [J]. 人民黄河,2019,41 (1):106-110.
- [15] 袁文忠. 相似理论与静力学模型试验 [M]. 成都: 西南交通 大学出版社, 1998: 112-119.