-
●非對稱異性隧道聯絡通道冷凍法(07月24日)
-
●水泥夯土材料抗壓強度試驗及耐(08月25日)
-
●變質巖類順層邊坡破裂跡象及邊(07月25日)
-
●大體積混凝土配合比優化設計在(08月25日)
-
●粉煤灰基超高性能混凝土配合比(07月25日)
-
●地鐵車輛段檢修庫裝配式混凝土(07月24日)
-
●大型十字交叉地鐵車站結構地震(07月25日)
-
●變坡面淺埋偏壓小凈距隧道圍巖(07月24日)
-
●邯鄲富水地層深基坑支護優化和(07月25日)
-
●自密實抑溫防水復合材料在地下(08月25日)
-
●粉煤灰摻量對高層建筑筏板基礎(06月26日)
-
●基于遺傳算法的神經網絡對大體(06月27日)
-
●氯鹽漬土無側限抗壓強度及體變(06月25日)
-
●不同 ZrO2 摻量改性水(06月26日)
-
●非均勻銹蝕對建筑鋼混組合梁承(06月27日)
-
●再生微粉泡沫混凝土力學性能研(06月25日)
-
●堿激發粉煤灰-高爐礦渣粉固化(09月11日)
-
●地鐵車輛段檢修庫裝配式混凝土(07月24日)
-
●昌寧隧道豎井輔助正洞施工技術(07月03日)
-
●堅硬頂板沿空留巷充填體加固技(06月25日)
PDF全文閱讀
李鴻娟1,徐嘯川2
(1.河南省地質礦產勘查開發局第四地質勘查院,河南 鄭州,472000;2.中國地質大學(武漢)工程學院,武漢,430074)
摘 要:為研究水位下降速度對堤防邊坡穩定性的影響,選取松花江某段堤防斷面作為模型試驗設計斷面,通過室內模型試驗,利用地形自動測量系統和高精度傳感器對不同水位下降速度下堤防邊坡的位移、孔隙水壓力和土壓力進行監測,同時利用GEO-Studio軟件對水位下降速度條件下的堤防邊坡浸潤線與穩定性進行分析。研究表明:①堤防內部的土水總應力與孔隙水壓力均隨水位的下降而下降,下降速度隨著水位下降速度的增大而增大,且靠近上游坡面處的下降幅度大于坡體內部,有效應力呈上升趨勢,當水位下降至坡底后,土水總應力與孔隙水壓力的下降速度開始逐漸減?。虎诘谭烙掳l生最大沉降的位置主要集中水位與邊坡交界附近,在邊坡中部位置出現了較大的拱起位移,且隨水位下降速度增大,邊坡最大沉降和最大拱起位移均呈現增大的趨勢;③堤防邊坡的穩定性系數隨水位下降先快速下降,穩定性系數的下降速度隨水位下降速度的增大而增大,當水位下降至坡腳后,邊坡穩定性系數逐漸增大,然后趨于不變,不同水位下降速度工況下邊坡最終達到的穩定性系數基本一致。
關鍵詞:堤防邊坡;水位下降速度;模型試驗;數值模擬;邊坡穩定性
中圖分類號: TV697.23 ;
文獻標志碼: A
文章編號:1005-8249(2024)02-0031-09
DOI:10.19860/j.cnki.issn1005-8249.2024.02.007
LI Hongjuan1, XU Xiaochuan2
(1. The Fourth Geological Exploration Institute of Henan Geology and Mineral Bureau, Zhengzhou 472000, China;2.School of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China)
Abstract: In order to study the influence of water level drawdown speed on the stability of embankment slope, this paper selects a section of the Songhua River embankment section as a model test design section. Through indoor model tests, the displacement, pore water pressure and earth pressure of embankment slope under different water level drawdown speeds are monitored by using automatic terrain measurement system and high-precision sensors, At the same time, GEO-Studio software was used to analyze the infiltration line and stability of embankment slopes under different water level drop rates. Research shows that: The total soil water stress and pore water pressure inside the embankment decrease with the decrease of water level, and the decrease rate increases with the increase of water level decrease rate. The decrease amplitude near the upstream slope surface is greater than that inside the slope body, and the effective stress shows an upward trend. When the water level drops to the bottom of the slope, the decrease rate of total soil water stress and pore water pressure begins to gradually decrease. The location where the maximum settlement occurs on the upstream slope of the embankment is mainly concentrated near the boundary between the water level and the slope. There is a significant arch displacement in the middle of the slope, and as the water level decreases, both the maximum settlement and arch displacement of the slope show an increasing trend. The stability coefficient of the embankment slope first rapidly decreases with the decrease of water level, and the decreasing speed of the stability coefficient increases with the increase of water level decreasing speed. When the water level drops to the foot of the slope, the stability coefficient of the slope gradually increases, and then tends to remain unchanged. The stability coefficient of the slope ultimately reaches the same level under different water level decreasing speed conditions.
Keywords: embankment slope; the rate of water level decline; model testing; numerical simulation; slope stability
基金項目:國家自然科學基金項目(51779155)。
作者簡介:李鴻娟(1987-),女,碩士,工程師,主要研究方向:地質災害防治、礦山地質環境治理等工作。
通信作者:徐嘯川(1988-),男,博士,主要研究方向:巖土工程、地質災害防治研究。
收稿日期:2023-07-12
冀公網安備13011002000529 技術支持:數字河北 